MUSEUM OF NORTHERN ARIZONA MEADOW RIPARIAN HABITAT ENHANCEMENT PROPOSAL

GREENGREYENGINEERING

CENE 486 C > Noor Alsadi > Matthew Sorenson >Jasem Alrumaidheen >Khaled Alazmi

> **PROJECT RELEVANCE**

- Land owned by the Museum of Northern Arizona (MNA)
- Coyote Springs is one of the natural functioning springs in the San Francisco Peaks area
- > 100 years ago cattle 40 years ago nursery currently for **recreational usage**
- **PROJECT OBJECTIVE:** Assess the riparian area and provide design alternatives that:
 - Promote proper function of the channel
 - Promote wildlife & plant diversity
 - Preserve culture heritage & add educational experiences

PROJECT STAKEHOLDERS

CURRENT SITUATION

CURRENT SITUATION

METHODS OF DESIGN

FIELD EVALUATION

- > Surveying
 - ➢ Pathway:
 - Asphalt sidewalk
 from The Peaks to
 Flagstaff Urban Trail
 - Existing dirt trail
 - Stream Reaches:
 - Reach A: partial stream length 225 ft
 - Reach B: partial stream length 195 ft

METHODS OF DESIGN

PHOTO-TRAPPING PLAN

> Adopted from:

The Smithsonian Tropical Research Institute Center for Tropical Forest Science protocol for camera-trap surveys of mammals

> Settings:

Two cameras placed at Eastern & Western outer limits

➤ Results:

Captured mule deer, feral cats, raccoons, and black tailed jackrabbits

HYDROLOGY DESIGN CONCEPT

Spring Box:

- Coyote Spring is a hill-slope spring
- Fix door with smart polymer glass
- Prevent access of pollutants

Figure 1- Spring box flow in fall 2015

Figure 2- Spring box flow in spring 2016

Figure 3- Sketchup spring box solution

HYDROLOGY DESIGN CONCEPT

Stream Morphology

- Cross sectional area: 1 ft x 1 ft
- Total stream length: 1360 ft
- Total valley length: 1346 ft
- Existing stream sinuosity: 1.06 ft/ft
- Proposed stream sinuosity: 1.22 ft/ft
- Coyote Springs discharge: 0.040 cfs
- Concrete Box => Pond
 - Seepage through the concrete box results in still water

EDUCATIONAL CONCEPT

FLAGSTAFF ARTS & Leadership Academy

Coyote Springs Educational Facts

- 1. Coyote Springs is one of the last functioning springs in the San Francisco Peaks area
- 2. Coyote Springs is located on the peaks senior living community but is owned on the
 - Museum of Northern Arizona (MNA) property
- 3. The spring is located at 35 13' 57.8", -111 39' 37.12" in the Flagstaff West USGS Quad
- 4. The elevation is approximately 2154 meters

Figure 6- Section on the website

Figure 4- Example "No Bikes" sign

Figure 5- Example flip educational sign

SKETCHUP- BEFORE

SKETCHUP- AFTER

SCHEDULE

Tasks	Date	
1.0 Data Collection	Jan. 19 to Feb. 5	
2.0 Methods	Jan. 1 – March 15	
2.1 Field Evaluation	Jan. 1 – March 10	
2.2 Photo-Trapping Evaluation	Feb. 4 to March 10	
2.3 Software	Feb. 4 to April	Finished On Time
3.0 Design Modeling Concept	Feb. 1 to March 15	Finished, Behind
3.1 Hydrology	Feb. 1 – March 10	Schedule
3.2 Pathway	Feb. 1 – March 10	Future 2 weeks
3.3 Education	Feb. 1 – March 10	
4.0 Analysis	March. 14 – April. 29	
4.1 Cost of Implementing Design	March. 21 to April 6	
4.2 Operation & Maintenance Plan	April. 3 - 6	
4.2 Final Report Review	April. 22	
5.0 Final Report and Website	May. 12	
5.1 Final Presentation	May. 6	14

COST OF DESIGN

Classification	Billing Rate \$/hr	Hours	Cost (\$)	
Project Manager	114	172	19,677	
Software Engineer	91	380	34,485	
Lab Technician	48	120	5,775	
Design Specialist	31	40	1,254	
Personnel Total		712	61,191	

Table 2- Predicted engineering cost

Classification	Billing Rate \$/hr	Hours	Cost (\$)	
Project Manager	114	114 103		
Software Engineer	91	176	15,972	
Lab Technician	48	110	5,294	
Design Specialist	31	32	1,003	
Personnel Total		421	34,052	

Table 3- Actual engineering cost

COST OF DESIGN

The second se						
DIV	Discription	Materials	Euipment	Subcontract	Cost/SF	Line Total
1	General Requirments	\$700	\$3,000		\$30	\$3,730
4	Exacavation			\$4,330	\$2.92	\$4,333
5	Demolition			\$700	\$20	\$720
6	Equipment					\$0
7	Speical Cleaning			\$1,000		\$1,000
8	Maintanence			\$400	\$0.44	\$400
Sales Tax	4.95%	\$34	\$148.50	\$287	\$1.73	\$471.23
Contingency	20%	\$140	\$600	\$1,160	\$7	\$1,907
Totals		\$874	\$3,749	\$7,247	\$44.62	\$12,561

Table 4- Cost of implementing design

ENVIRONMENTAL IMPACTS

- Expand meadow wetlands
 Reduce water pollution
 Low damage to vegetation
- Promote wildlife
- Promote plant diversity
- Low soil erosion and compaction

SOCIAL, HEALTH & CULTURE IMPACTS

- Promote recreational activities
- Increase levels of tourism
- Venue for small events, especially for the senior living community
- Enhance community engagement
- Preserve culture heritage
- Enhance educational experience

ECONOMIC IMPACTS

- Increase the nearby property value
- Low maintenance cost
- Low design construction cost
- Expand small business growth

REFERENCES

[1]"The Past and Future of Uganda's Sanitation: A Photo Essay |", *Pyxeraglobal.org*, 2015. [Online]. Available:

https://www.pyxeraglobal.org/the-past-and-future-of-ugandassanitation-a-photo-essay/.

[2] Water.org, "Stories from Uganda- Water & Sanitation Solution," 2016. Online. Available: http://water.org/country/uganda.

[3] Buckley, R. (1991). *Environmental Impacts of Recreation in Parks and Reserves*. Retrieved April 21, 2016, from http://link.springer.com/chapter/10.1007/978-3-642-76502-5_13

[4] Sherer, P. M. (2006). The Benefits of Parks. East Shore Park. Retrieved April 21, 2016, from http://www.eastshorepark.org/benefits_of_parks tpl.pdf

[5] Sherer, P. M. (2006). The Benefits of Parks. *East Shore Park*. Retrieved April 21, 2016, from http://www.eastshorepark.org/benefits_of_parks tpl.pdf